Traffic flow prediction is an important part of smart transportation. The goal is to predict future traffic conditions based on historical data recorded by sensors and the traffic network. As the city continues to build, parts of the transportation network will be added or modified. How to accurately predict expanding and evolving long-term streaming networks is of great significance. To this end, we propose a new simulation-based criterion that considers teaching autonomous agents to mimic sensor patterns, planning their next visit based on the sensor's profile (e.g., traffic, speed, occupancy). The data recorded by the sensor is most accurate when the agent can perfectly simulate the sensor's activity pattern. We propose to formulate the problem as a continuous reinforcement learning task, where the agent is the next flow value predictor, the action is the next time-series flow value in the sensor, and the environment state is a dynamically fused representation of the sensor and transportation network. Actions taken by the agent change the environment, which in turn forces the agent's mode to update, while the agent further explores changes in the dynamic traffic network, which helps the agent predict its next visit more accurately. Therefore, we develop a strategy in which sensors and traffic networks update each other and incorporate temporal context to quantify state representations evolving over time.
translated by 谷歌翻译
对比性语言图像预测在学习网络尺度数据的视觉文本联合表示方面取得了巨大的成功,这表明了各种图像任务的显着“零射”概括能力。但是,如何有效地将这种新的语言图像预处理方法扩展到视频域仍然是一个开放的问题。在这项工作中,我们提出了一种简单而有效的方法,该方法将预验证的语言图像模型直接适应视频识别,而不是从头开始预处理新模型。更具体地说,为了捕获沿时间维度框架的远距离依赖性,我们提出了一种跨框架注意机制,该机制明确地跨帧交换信息。这样的模块是轻量级的,可以无缝地插入验证的语言图像模型中。此外,我们提出了一个特定于视频的提示方案,该方案利用视频内容信息生成歧视性文本提示。广泛的实验表明,我们的方法是有效的,可以推广到不同的视频识别方案。特别是,在完全监督的设置下,我们的方法在Kinectics-400上获得了最高1的精度为87.1%,而与SWIN-L和Vivit-H相比,使用量少12倍。在零拍摄的实验中,我们的方法超过了当前的最新方法 +7.6%和 +14.9%,而在两个流行协议下,TOP-1的准确性。在少数拍摄的情况下,当标记的数据非常有限时,我们的方法优于先前的最佳方法 +32.1%和 +23.1%。代码和型号可在https://aka.ms/x-clip上找到
translated by 谷歌翻译
现在,我们目睹了深度学习方法在各种蛋白质(或数据集)中的重大进展。但是,缺乏评估不同方法的性能的标准基准,这阻碍了该领域的深度学习进步。在本文中,我们提出了一种称为PEER的基准,这是一种用于蛋白质序列理解的全面和多任务基准。 PEER提供了一组不同的蛋白质理解任务,包括蛋白质功能预测,蛋白质定位预测,蛋白质结构预测,蛋白质 - 蛋白质相互作用预测和蛋白质 - 配体相互作用预测。我们评估每个任务的不同类型的基于序列的方法,包括传统的特征工程方法,不同的序列编码方法以及大规模的预训练蛋白质语言模型。此外,我们还研究了这些方法在多任务学习设置下的性能。实验结果表明,大规模的预训练蛋白质语言模型可实现大多数单个任务的最佳性能,共同训练多个任务进一步提高了性能。该基准的数据集和源代码均可在https://github.com/deepgraphlearning/peer_benchmark上获得
translated by 谷歌翻译
基于骨架的动作识别方法受到时空骨骼图的语义提取的限制。但是,当前方法在有效地结合时间和空间图尺寸的特征方面很难,一侧往往厚度厚,另一侧较薄。在本文中,我们提出了一个时间通道聚合图卷积网络(TCA-GCN),以动态有效地学习基于骨架动作识别的不同时间和通道维度中的空间和时间拓扑。我们使用时间聚合模块来学习时间维特征和通道聚合模块,以有效地将空间动态通道拓扑特征与时间动态拓扑特征相结合。此外,我们在时间建模上提取多尺度的骨骼特征,并将其与注意机制融合。广泛的实验表明,在NTU RGB+D,NTU RGB+D 120和NW-UCLA数据集上,我们的模型结果优于最先进的方法。
translated by 谷歌翻译
学习有效的蛋白质表示在生物学的各种任务中至关重要,例如预测蛋白质功能或结构。现有的方法通常在大量未标记的氨基酸序列上预先蛋白质语言模型,然后在下游任务中使用一些标记的数据来对模型进行修复。尽管基于序列的方法具有有效性,但尚未探索蛋白质性能预测的已知蛋白质结构的预处理功能,尽管蛋白质结构已知是蛋白质功能的决定因素,但尚未探索。在本文中,我们建议根据其3D结构预处理蛋白质。我们首先提出一个简单而有效的编码器,以学习蛋白质的几何特征。我们通过利用多视图对比学习和不同的自我预测任务来预先蛋白质图编码器。对功能预测和折叠分类任务的实验结果表明,我们提出的预处理方法表现优于或与最新的基于最新的序列方法相提并论,同时使用较少的数据。我们的实施可在https://github.com/deepgraphlearning/gearnet上获得。
translated by 谷歌翻译
随着深度学习技术的快速发展,各种最近的工作试图应用图形神经网络(GNN)来解决诸如布尔满足(SAT)之类的NP硬问题,这表明了桥接机器学习与象征性差距的潜力。然而,GNN预测的解决方案的质量并未在文献中进行很好地研究。在本文中,我们研究了GNNS在学习中解决最大可满足性(MaxSAT)问题的能力,从理论和实践角度来看。我们构建了两种GNN模型来学习来自基准的MaxSAT实例的解决方案,并显示GNN通过实验评估解决MaxSAT问题的有吸引力。我们还基于算法对准理论,我们还提出了GNNS可以在一定程度上学会解决MaxSAT问题的影响的理论解释。
translated by 谷歌翻译
在复杂环境中开发针对四足动物的强大视觉引导控制器,具有各种障碍,动力环境和不平坦的地形,这是非常具有挑战性的。尽管增强学习(RL)为敏捷的运动技能提供了有希望的范式,并在模拟中提供了视觉投入,但在现实世界中将RL政策部署仍然非常具有挑战性。我们的关键见解是,除了域间隙的差异,模拟和现实世界之间的视觉外观外,控制管道的延迟也是困难的主要原因。在本文中,我们建议在训练RL代理时解决此问题。具体而言,我们通过使用过去的观测值模拟真实硬件的延迟,并以随机时期进行采样,以进行本体感受和视觉。我们在没有任何预定义的控制器或参考运动的情况下训练RL策略在物理模拟器中以端到端的控制,并将其直接部署在野外运行的真实A1四倍的机器人上。我们在具有复杂地形和障碍的不同室外环境中评估我们的方法。我们证明机器人可以高速操纵,避免障碍物,并在基准方面显示出显着改善。我们的带有视频的项目页面位于https://mehooz.github.io/mmdr-wild/。
translated by 谷歌翻译
文本识别是文档数字化的长期研究问题。现有的方法通常是基于CNN构建的,以用于图像理解,并为Char-Level文本生成而建立RNN。此外,通常需要另一种语言模型来提高整体准确性作为后处理步骤。在本文中,我们提出了一种使用预训练的图像变压器和文本变压器模型(即Trocr)提出的端到端文本识别方法,该模型利用了变压器体系结构,以实现图像理解和文字级级文本生成。TROR模型很简单,但有效,可以通过大规模合成数据进行预训练,并通过人体标记的数据集进行微调。实验表明,TROR模型的表现优于印刷,手写和场景文本识别任务上的当前最新模型。Trocr模型和代码可在\ url {https://aka.ms/trocr}上公开获得。
translated by 谷歌翻译
我们开发了一个新颖的框架,将稀疏集团拉索的正规化者添加到深度学习中的自适应优化者家族中,例如动量,亚当,亚当,阿姆斯格拉德,阿德哈西亚人,并创建了新的优化者,这些优化者被称为群体动量,命名因此,Adagrad小组,亚当集团,Amsgrad集团和Adahessian集团等。我们基于原始偶的方法在随机凸设置中建立理论上证明的收敛保证。我们评估了新优化器对具有最先进的深度学习模型的三个大型现实广告单击数据集的正则效应。实验结果表明,与使用幅度修剪方法的后处理过程相比,模型的性能可以在相同的稀疏度水平上显着提高。此外,与没有幅度修剪的情况相比,我们的方法可以实现极高的稀疏性,并具有明显的更好或高度竞争性的性能。
translated by 谷歌翻译
在本文中,我们介绍了Tianshou,这是一个高度模块化的Python库,用于深钢筋学习(DRL),它使用Pytorch作为后端。天舒(Tianshou)打算通过提供DRL算法的灵活和可靠的基础架构来对研究进行研究。它通过统一界面通过20多种经典算法来支持在线和离线培训。为了促进相关的研究并证明天舒的可靠性,我们发布了田肖(Tianshou)的Mujoco环境基准,涵盖了八种具有最先进性能的经典算法。我们通过https://github.com/thu-ml/tianshou/开放源。
translated by 谷歌翻译